Social Icons

Pages

Minggu, 13 November 2011

Pemetaan Sumberdaya Kelautan

Survei Kelautan

 

Potensi Kelautan di republik ini sungguh sangat berlimpah baik di nearshore maupun di offshore, di mana industri maritim merupakan industri yang sangat menantang (world wide business). Kawasan laut memiliki dimensi pengembangan yang lebih luas dari daratan karena mempunyai keragaman potensi alam yang dapat dikelola. Beberapa sektor kelautan seperti perikanan, perhubungan laut, pertambangan sudah mulai dikembangkan walaupun masih jauh dari potensi yang ada.
Seiring dengan meningkatnya kebutuhan industri yang marine-oriented, survei hidrografi mutlak dilakukan dalam tahapan explorasi maupun feasibility study. Survei hidrografi adalah cabang ilmu yang berkepentingan dengan pengukuran dan deskripsi sifat serta bentuk dasar perairan dan dinamika badan air atau dengan kata lain Hidrografi adalah ilmu terapan di dalam melakukan pengukuran dan pendeskripsian objek-objek fisik di bawah laut untuk digunakan dalam navigasi. Informasi yang diperoleh dari kegiatan ini untuk pengelolaan sumberdaya laut dan pembangunan industri kelautan (KK Hidrografi, 2004 ).
Kebutuhan teknologi survei dan pemetaan laut yang modern ini merupakan suatu kebutuhan, apalagi dengan berlakunya UNCLOS 1982 (United Nations Convention on Law of The Sea), Indonesia diakui sebagai negara kepulauan dan perairan yuridiksi Indonesia bertambah luas serta perlu segera dipetakan.
Kompetensi profesi dan Akademisi Hidrografi dikelompokkan menjadi beberapa aplikasi yaitu (IHB, 2001)
1. Nautical Charting ( pemetaan laut )
2. Military
3. Inland Water
4. Coastal Zone management
5. Offshore Seismic
6. Offshore Construction
7. Remote sensing
Tujuan survey hidro-oseanografi diantaranya untuk mendukung pekerjaan :
- Rencana penentuan dan pemasangan jalur kabel dan pipa bawah laut
- Pencarian pesawat dan kapal-kapal yang tenggelam.
-  Penentuan algoritma parameter kelautan (TSS, SST, koreksi kolom perairan untuk aplikasi penginderaan jauh, dll)
- Penentuan pengeboran sumur minyak (well rig)
- Operasi pencarian ranjau dan bahan peledak di bawah laut
- Investigasi pipa dan kabel bawah laut, dll.
Adapun kegiatan survey hidro-oseanografi meliputi :

1. Survey Titik Kontrol Geodetik
Referensi titik kontrol geodesi yang merupakan bagian dari Jaringan Kerangka Kontrol Horizontal Nasional yang terletak di dekat atau di lokasi survei diperlukan untuk penentuan posisi DGPS menggunakan Shorebase Station (Reference Point) dan untuk verifikasi alat DGPS yang akan digunakan untuk survey. Point of Origin untuk kerangka kontrol horizontal tersebut diperoleh dari instansi resmi, seperti Bakosurtanal. Jika diperlukan, penentuan point of origin dapat dilaksanakan sendiri, dengan referensi salah satu titik yang sudah ada, baik dengan mengadakan pengamatan GPS secara relatif maupun secara konvensional dengan melakukan pengukuran traverse. Jika titik referensi tambahan dibutuhkan, maka titik tersebut harus dibangun semi-permanen yang dapat mewakili daerah survei yang telah ditentukan.
Semua ketinggian (elevasi) dan kedalaman air, akan dihubungkan dengan suatu datum yang direferensikan ke Mean Sea Level (MSL) atau Chart Datum(Low Water Spring: LWS), atau datum tertentu yang sudah mendapatkan persetujuan. Semua elevasi dan kedalaman harus dihubungkan dengan benchmark tertentu yang terletak di darat, atau direferensikan kepada elipsoid tertentu yang ditentukan dengan GPS.
2. Sistem Navigasi Survey
Penentuan posisi kapal survei dilaksanakan menggunakan GPS receiver dengan metode Real Time Differential (DGPS) dengan mengikuti prinsip survei yang baik dan menjamin tidak adanya keraguan atas posisi yang dihasilkan. Lintasan kapal survei dipantau setiap saat melalui layar monitor atau diplot pada kertas dari atas anjungan. Sistim komputer navigasi memberikan informasi satelit GPS seperti: nomer satelit yang digunakan, PDOP dan HDOP. Elevation mask setiap satelit diset pada ketinggian minimum 10 derajat. Bila DGPS yang digunakan menggunakan shore base station, satu GPS receiver dipasang di atas kapal survei dan satu lagi di atas titik berkoordinat di darat (shore base station). Selama akuisisi data, koreksi differential dimonitor dari atas kapal pada sistim navigasi.
Sistim komputer navigasi menentukan posisi setiap detik, dan jika perlu, logging data ke hardisk komputer dapat ditentukan setiap 1, 5 atau 10 detik sebagai pilihan.
3. Pengamatan Pasang Surut Laut
Pasang surut muka air laut dipengaruhi gravitasi bulan dan matahari, tetapi lebih dominan grafitasi bulan, massa matahari jauh lebih besar dibandingkan massa bulan, namun karena jarak bulan yang jauh lebih dekat ke bumi di banding matahari, matahari hanya memberikan pengaruh yang lebih kecil, perbandingan grafitasi bulan dan matahari (masing-masing terhadap bumi) adalah sekitar 1 : 0,46.
Untuk keperluan pemetaan darat diperlukan data mean sea level ( msl ) yang merupakan rata – rata pasang surut selama kurun waktu tertentu (18,6 tahun). Untuk keperluan pemetaan laut diperlukan data surut terendah ( untuk keperluan praktis minimal pengamatan selama 1 bulan , untuk keperluan ilmiah bervariasi 1 tahun dan 18,6 tahun)
Pengamatan pasang surut dilaksanakan dengan tujuan untuk menentukan Muka Surutan Peta (Chart Datum), memberikan koreksi untuk reduksi hasil survei Batimetri, juga untuk mendapatkan korelasi data dengan hasil pengamatan arus.
Stasiun pasang surut dipasang di dekat/dalam kedua ujung koridor rencana jalur survey dan masing-masing diamati selama minimal 15 hari terus-menerus dan pengamatan pasang surut dilaksanakan selama pekerjaan survei berlangsung. Secepatnya setelah pemasangan, tide gauge/staff dilakukan pengikatan secara vertikal dengan metode levelling (sipat datar) ke titik kontrol di darat yang terdekat, sebelum pekerjaan survei dilaksanakan dan pada akhir pekerjaan survey dilakukan.
4. Survey Batimetri
Survei batimetrik dimaksudkan untuk mendapatkan data kedalaman dan konfigurasi/ topografi dasar laut, termasuk lokasi dan luasan obyek-obyek yang mungkin membahayakan.
Survei Batimetri dilaksanakan mencakup sepanjang koridor survey dengan lebar bervariasi. Lajur utama harus dijalankan dengan interval 100 meter dan lajur silang (cross line) dengan interval 1.000 meter. Kemudian setelah rencana jalur kabel ditetapkan, koridor baru akan ditetapkan selebar 1.000 meter. Lajur utama dijalankan dengan interval 50 meter dan lajur silang (cross line) dengan interval 500 meter. Peralatan echosounder digunakan untuk mendapatkan data kedalaman optimum mencakup seluruh kedalaman dalam area survei. Agar tujuan ini tercapai, alat echosounder dioperasikan sesuai dengan spesifikasi pabrik. Prosedur standar kalibrasi dilaksanakan dengan melakukan barcheck atau koreksi Sound Velocity Profile (SVP) untuk menentukan transmisi dan kecepatan rambat gelombang suara dalam air laut, dan juga untuk menentukan index error correction. Kalibrasi dilaksanakan minimal sebelum dan setelah dilaksanakan survei pada hari yang sama. Kalibrasi juga selalu dilaksanakan setelah adanya perbaikan apabila terjadi kerusakan alat selama periode survei. Pekerjaan survei Batimetri tidak boleh dilaksanakan pada keadaan ombak dengan ketinggian lebih dari 1,5m bila tanpa heave compensator, atau hingga 2,5m bila menggunakan heave compensator.

5. Survey Side Scan Sonar

Survei investigasi bawah air (side scan sonar) dimaksudkan untuk mendapatkan kenampakan dasar laut, termasuk lokasi dan luasan obyek-obyek yang mungkin membahayakan. Dual-channel Side Scan Sonar System dengan kemampuan cakupan jarak minimal hingga 75m digunakan untuk mendapatkan data kenampakan dasar-laut (seabed features) di sepanjang koridor yang sama dengan survei Batimetri. Skala penyapuan yang digunakan diatur sedemikian rupa sehingga terjadi overlap minimal 50% untuk area survei yang direncanakan. Lajur-lajur survei side scan sonar dapat dijalankan bersamaan dengan pelaksanaan survei Batimetri dan/atau disesuaikan dengan kedalaman laut sehingga cakupan minimal tersebut dapat terpenuhi.
Apabila menggunakan towfish yang ditarik, panjang kabel towfish tersedia cukup agar tinggi towfish di atas dasar laut dapat dijaga kira-kira 10% dari lebar cakupan/ penyapuan yang dipilih. Towfish sebaiknya dioperasikan dari winch bermotor lengkap dengan electrical slip rings. Rekaman data sonar dikoreksi untuk tow fish lay back dan slant range. Apabila menggunakan towfish yang dipasang pada lambung kapal (vessel-mounted), sistim dilengkapi dengan heave compensator untuk mereduksi pengaruh gelombang. Sistem yang digunakan mampu menghasilkan clear record dari keadaan dasar laut, identifikasi adanya wrecks, obstacles, debris, sand waves, rock outcrops, mud flows atau slides dan sedimen.
Kemungkinan adanya bahaya atau keadaan dasar laut yang perlu mendapatkan perhatian khusus dilakukan investigasi untuk memperjelas jenis dan ukuran bahaya tersebut. Investigasi tersebut dapat dilaksanakan dengan menjalankan lajur yang lebih rapat pada arah yang berbeda dengan lajur umum yang telah dijalankan sebelumnya. Penentuan posisi menggunakan jarak atau waktu tertentu ditandai pada rekaman sonar. Data jarak antara towfish dan antena GPS, termasuk setiap perubahan jarak ini, harus dicatat secara tertib pada Operator’s Log selama survei berlangsung untuk keperluan pengolahan data lebih lanjut.

7. Survey Sub Bottom Profiler

Tujuan dari Survei Sub-bottom Profiling (SBP) adalah untuk investigasi dan identifikasi lapisan sedimen dekat dengan permukaan dasar-laut (biasanya hingga 10m) dan untuk menentukan informasi penting yang berhubungan dengan stratifikasi dasar laut. Survei SBP dapat dilaksanakan bersamaan dengan survei Batimetri dan Side Scan Sonar.
Survei SBP dilaksanakan mencakup sepanjang koridor survey dengan lebar bervariasi. Lajur utama dijalankan dengan interval 100 meter dan lajur silang (cross line) dengan interval 1.000 meter. Kemudian setelah rencana jalur ditetapkan, lajur utama kembali dijalankan sebanyak 3 lajur dengan interval 50 meter, dimana satu lajur dijalankan tepat di tengah-tengah rencana jalur kabel.
System Parametric Subbottom Profiling (atau system lain yang dapat memberikan data sepadan) digunakan untuk mendapatkan rekaman data permanent secara grafis atas profil dasar laut dan perlapisan di bawahnya dengan penetrasi dan resolusi optimum di seluruh kedalaman sepanjang koridor rencana jalur kabel. Untuk mencapai maksud ini, peralatan dioperasikan sesuai dengan petunjuk pabrik dan diset untuk mendapatkan rekaman data optimum. Sub-bottom profiler memberikan rekaman data secara grafis dengan jelas pada skala dan resolusi yang jelas.
Jarak antara transducer/hydrophone dan antena GPS dicatat secara tertib pada Operator’s Log dan kemudian diperhitungkan pada saat pekerjaan interpretasi.
Survei Sub-bottom Profiling tidak boleh dilaksanakan pada cuaca berombak karena sangat mempengaruhi kualitas data, kecuali apabila menggunakan heave compensator. Kemungkinan terjadinya noise yang bersumber dari mesin atau kapal survei harus diupayakan seminimal mungkin dengan berbagai cara. Panjang kabel seismic source dan hydrophone (bila menggunakan sistem demikian) disediakan cukup sehingga memungkinkan diulur pada jarak yang dapat memberikan rekaman data optimum.

8. Survey Magnetik
Survei magnetik dilaksanakan untuk mendeteksi adanya obyek-obyek metal pada atau dekat permukaan dasar laut yang mungkin akan membahayakan. Bahaya yang dimaksud antara lain berupa : wrecks, sunken buoys, steel cables maupun bahaya lain yang terdapat di area survei yang telah ditentukan.
Survei magnetik disarankan dilaksanakan bersamaan dengan survei Batimetri, dengan interval lajur survei sebagaimana menjalankan lajur-lajur batimetrik. Survei magnetometer tidak disarankan untuk dilaksanakan bersamaan dengan survei Side Scan Sonar karena dikawatirkan terjadi gangguan yang bersumber dari towfish Side Scan Sonar kecuali dapat dibuktikan memang tidak terjadi gangguan. Panjang kabel disediakan cukup agar dapat dioperasikan secara optimum sesuai dengan kedalaman air laut selama pelaksanaan survei. Untuk mendapatkan rekaman (secara grafis atau digital) yang memberikan anomali jelas dan pada skala optimum, sensor unit dipasang sedemikian rupa sehingga berada dalam jangkauan deteksi optimum.
Jika terdapat indikasi adanya obyek metal yang cukup signifikan di suatu area tertentu, maka dilakukan survei investigasi lebih lanjut dengan cara menjalankan lajur survei dengan interval lebih rapat.
9. Pengukuran Arus
Pengamatan arus diperlukan dengan tujuan untuk mendapatkan data arah dan kecepatan arus. Data tersebut akan dikorelasikan dengan data pengamatan pasang surut.
Pengamatan arus dilaksanakan dengan 2 metode yaitu;
2 stasiun tetap yaitu pada perairan dekat kedua pantai di mana landing point akan ditempatkan selama sekurang-kurangnya 30 hari pengukuran pada 3 lapisan kedalaman sebesar 0.2, 0.6 dan 0.8m di bawah permukaan air.
Pengukuran dengan metode transek sepanjang jalur poros rencana survei selama sekurang-kurangnya 25 jam saat periode Spring Tide dengan menggunakan peralatan pengukur arus hidro-akustik.
Pembacaan atau pengumpulan data harus dilaksanakan dengan interval tidak lebih dari 60 menit.

10. Survey Transpor Sedimen
Dinamika badan air dan dasar perairan di wilayah survei dikenal sebagai daerah dengan tingkat dinamisasi dasar perairan yang tinggi. Hal tersebut diperkirakan akibat aktifitas eksploitasi pasir di sekitar area survei. Perubahan kedudukan dasar laut akan berakibat pada perubahan kedudukan kabel yang telah digelar.
Survei distribusi sedimen di sepanjang jalur survey minimum dilakukan di tiga tempat mewakili pantai dan tengah-tengah antara keduanya. Pengukuran dilakukan dalam rentang waktu 30 hari. Peralatan utama berupa sediment trap (jebakan sedimen). Sedimen yang terjebak selanjutnya diukur dan diteliti di laboratorium mengenai total berat, ukuran sedimen (grain size) dan dominasi komposisi sedimen dalam arah dan volume sedimen per satuan waktu. Hasil ini nantinya akan digunakan dalam menentukan model arus untuk membentuk model traspor sedimen yang tepat. 
11. Pengadaan Data Gelombang
Pengadaan data gelombang laut dilakukan dengan 2 metode yaitu metode pengukuran langsung dan metode pengadaan data tidak langsung atau data sekunder. Pada metode pengukuran langsung, pengamatan gelombang dilakukan dengan mengamati karakter gelombang pada kedua perairan dekat pantai. Pengamatan dilakukan dengan menggunakan wave-staff atau peralatan perekam gelombang automatis (self recording).
Metode pengukuran tidak langsung dilakukan dengan pengumpulan data sekunder yang berasal dari dinas meteorologi setempat. Data tersebut dapat digunakan dalam pembangunan model gelombang.
12. Pengambilan Contoh Tanah
Pengambilan contoh dasar laut (seabed sampling) dilaksanakan dengan menggunakan salah satu dari alat berikut: Grab Sampler atau Gravity Corer. Grab/ gravity coring dilaksanakan sepanjang rencana jalur survey hingga kedalaman maksimum 10m dari permukaan dasar laut, dan dengan interval jarak 2,0km atau di lokasi di mana terdapat perubahan litology yang signifikan yang diindikasikan dari hasil survei SSS ataupun survei SBP.
Pengambilan contoh tanah dilakukan dari atas kapal survei dan dilaksanakan setelah adanya hasil interpretasi sementara di atas kapal survei atas hasil survei Side Scan Sonar dan Sub-bottom Profiling.
Setiap pengambilan contoh tanah harus diusahakan agar memperoleh penetrasi optimum. Setiap kali contoh tanah telah diambil harus dicatat dan dideskripsikan secara visual di lapangan tentang: posisi, jenis, ukuran butir, warna, dan lain-lain yang berhubungan.
Pustaka:

Poerbandono & Eka Djunarsjah (2005). Survei Hidrografi. Refika Aditama. Bandung, Indonesia. 166pp.

Djunarsjah, E. (2004), Penggunaan Standar Ketelitian IHO (SP-44) dalam Penetapan Batas Landas Kontinen, Makalah, Lokakarya Sewindu Konvensi Hukum Laut PBB, Yogyakarta.
http://www.indocrews.com

Transpor Sedimen

Transpor Sedimen

Sedimen adalah material atau pecahan dari batuan, mineral dan material organik yang melayang-layang di dalam air, udara, maupun yang dikumpulkan di dasar sungai atau laut oleh pembawa atau perantara alami lainnya. Sedimen pantai dapat berasal dari erosi pantai, dari daratan yang terbawa oleh sungai, dan dari laut dalam yang terbawa oleh arus ke daerah pantai. Dalam ilmu teknik pantai dikenal istilah pergerakan sedimen pantai atau transpor sedimen pantai. Bambang Triatmodjo (1999) menjelaskan bahwa definisi dari transpor sedimen pantai adalah gerakan sedimen di daerah pantai yang disebabkan oleh gelombang dan arus yang dibangkitkannya. Transpor sedimen pantai inilah yang akan menentukan terjadinya sedimentasi atau erosi di daerah pantai.

Transpor sedimen dapat dibedakan menjadi dua, yaitu transpor sedimen menuju dan meninggalkan pantai (onshore - offshore transport) yang memiliki arah rata-rata tegak lurus pantai dan transpor sepanjang pantai (longshore transport) yang memiliki arah rata-rata sejajar pantai.

Transport sedimen tegak lurus pantai dapat dilihat pada kemiringan pantai dan bentuk dasar lautnya. Proses transpor sedimen tegak lurus biasanya terjadi pada daerah teluk dan pantai – pantai yang memiliki gelombang yang relatif tenang. Pada saat musim ombak, energi yang terdapat pada gelombang akan menggerus bibir pantai dan menimbulkan erosi yang ditandai dengan adanya dinding pantai, seperti gambar di bawah ini :


Transpor Sedimen, sedimentasi pantai

Gambar 1. Erosi akibat transpor sedimen tegak lurus pantai



Penggerusan tersebut akan menimbulkan lembah (trough) namun hal itu juga akan dibare ngi dengan terbentuknya punggungan (bar) di samping lembah tersebut akibat adanya hukum kekekalan massa. Adanya punggungan tersebut akan mengakibatkan perubahan posisi gelombang pecah karena pada umumnya gelombang akan pecah sebelum mencapai punggungan.


Transpor Sedimen, sedimentasi pantai

Gambar 2. Proses transpor sedimen tegak lurus pantai

Hukum kekekalan massa berlaku pada transpor sedimen tegak lurus pantai. Hukum kekekalan massa menyatakan bahwa sedimen tidak dapat hilang namun hanya dapat berpindah dari suatu tempat ke tempat yang lainnya. Dari gambar terlihat timbulnya erosi pada daerah bibir pantai akan diikuti dengan proses sedimentasi di laut.

Transpor sedimen sejajar pantai (longshore transport) terjadi pada daerah pantai yang langsung berbatasan dengan samudera. Transpor sedimen jenis ini dapat lebih mudah terlihat karena transpor sedimen jenis ini memberi pengaruh terhadap bangunan – bangunan pantai yang menjorok ke laut. Akibat adanya transpor sedimen sejajar pantai maka pada bangunan pantai yang menjorok ke laut akan terlihat perbedaan pada kedua sisi bangunan pantai tersebut. Pada satu sisi bangunan tersebut akan di jumpai proses sedimentasi sedangkan pada sisi lainnya terjadi proses erosi. Oleh karena itu dalam perencanaan untuk mendirikan bangunan pantai harus diperkirakan seberapa besar pengaruh dari transpor sedimen sebagai fungsi dari gelombang dan arus. Hal itu harus dilakukan untuk mencegah kerusakan pada daerah pantai.


Transpor Sedimen, sedimentasi pantai

Gambar 3. Sedimentasi dan erosi akibat pembangunan jetty

Efek lain yang terjadi pada daerah pantai akibat adanya transpor sedimen sejajar pantai adalah terbentuknya daratan antara suatu pulau dengan daratan utama. Efek ini biasa di kenal dengan nama tombolo.

Referensi

Sulaiman, A. dan I. Soehardi. 2008. Pendahuluan Geomorfologi Pantai Kualitatif. BPPT. Jakarta.

Triatmojo, B. 1999. Teknik Pantai Edisi Kedua. Beta Offset. Yogyakarta.

Upwelling

Upwelling merupakan fenomena oseanografi yang melibatkan wind-driven motion yang kuat, dingin dan biasanya membawa massa air yang kaya akan nutrien ke arah permukaan laut. Upwelling adalah fenoma atau kejadian yang berkaitan dengan gerakan naiknya massa air laut. Gerakan vertikal ini adalah bagian integrasi dari sirkulasi laut tetapi ribuan sampai jutaan kali lebih kecil dari arus horizontal. Gerakan vertikal ini terjadi akibat adanya stratifikasi densitas air laut karena dengan penambahan kedalaman mengakibatkan suhu menurun dan densitas meningkat yang menimbulkan energi untuk menggerakkan massa air secara vertikal. Laut juga terstratifikasi oleh faktor lain, seperti kandungan nutrien yang semakin meningkat seiring pertambahan kedalaman. Dengan demikian adanya gerakan massa air vertikal akan menimbulkan efek yang signifikan terhadap kandungan nutrien pada lapisan kedalaman tertentu.
Setidaknya ada lima tipe upwelling yaitu coastal upwelling, large-scale wind-driven upwelling in the ocean interior, upwelling associated with eddies, topographically-associated upwelling, and broad-diffusive upwelling in the ocean interior.
Coastal Upwelling
Coastal upwelling adalah tipe yang paling banyak memiliki hubungan dengan aktivitas manusia dan memberikan banyak pengaruh terhadapa produktivitas perikanan di dunia, seperti ikan pelagis kecil (sardines, anchovies, dll.). Laut dalam kaya akan nutrien termasuk nitrate and phosphate, yang merupakan hasil dari dekomposisi materi organik (dead/detrital plankton) dari permukaan laut.

Ketika sampai ke permukaan, nutrien tersebut digunakan oleh fitoplankton, beserta CO2 terlarut dan dan energi cahaya matahari untuk menghasilkan bahan organik melalui proses fotosintesis. Daerah Upwelling memiliki produktivitas yang tinggi dibanding dengan wilayah lainnya. Hal ini berkaitan dengan rantai makanan, karena fitoplankton berada pada level dasar pada rantai makanan di laut. Daearah dari upwelling antara lain pantai Peru, Chile, Laut arab, western South Africa, eastern New Zealand, southeastern Brazil dan pantai California.

Adapun rantai makanan di laut adalah sebagai berikut :

Phytoplankton -> Zooplankton -> Predatory zooplankton -> Filter feeders -> Predatory fish

Karena ini menjadi sebuah rantai makanan, ini berarti bahwa setiap spesies adalah spesies kunci dalam zona upwelling. Bagian kunci dari oseanografi fisika yang menimbulkan coastal upwelling adalah efek Coriolis yang didorong oleh wind-driven yang derung diarahkan ke sebelah kanan di belahan bumi utara dan ke arah kiri di belahan bumi selatan.

Equatorial Upwelling

Fenomena yang sama terjadi di ekuator. Apapun lokasinya ini merupakan hasil dari divergensi, massa air yang nutrien terangkat dari lapisan bawah dan hasilnya ditandai oleh fakta bahwa pada daerah ekuator di pasifik memiliki konsentrasi fitoplankton yang tinggi.
Southern Ocean Upwelling




Upwelling

Upwelling dalam skala besar juga terjadi di Southern Ocean. Di sana, dipengaruhi angin yang kuat dari barat dan timur yang bertiup mengelilingi Antarctika, yang mengakibatkan perubahan yang signifikan terhadap aliran massa air yang menuju ke utara. Sebenarnya tipe ini masih termasuk ke dalam coastal upwelling. Ketika tidak ada daratan antara Amerika Selatan dengan Semenanjung Antartika, sejummah massa air terangkat dari lapisan dalam. Dalam banyak pengamatan dan sintesis model numerik, upwelling samudra bagian Selatan merupakan sarana utama untuk mengaduk material lapisan dalam ke permukaan.Beberapa model sirkulasi laut menunjukkan bahwa dalam skala luas upwelling terjadi di daerah tropis, karena didorong tekanan air mengalir berkumpul ke arah lintang rendah dimana terdifusi dengan lapisan hangat dari permukaan.

Tropical cyclone upwelling

Upwelling juga bisa disebabkan oleh tropical cyclone yang melanda suatu wilayah laut, biasanya apabila bertiup dengan kecepatannya kurang dari 5 mph (8 km/h).

Artificial Upwelling
Upwelling tipe jenis ini dihasilkan oleh perangkat yang menggunakan energi gelombang laut atau konversi energi panas laut untuk memompa air ke permukaan. Perangkat seperti telah dilakukan untuk memproduksi plankto.
Non-oceanic upwelling

Upwellings juga terjadi di lingkungan lainnya, seperti danau, magma dalam mantel bumi. Biasanya akibat dari konveksi.
Referensi:

US Research project, NSF and Oregon State University

MASA PEMIJAHAN PADA KARANG (SPAWNING)

Tugas Individu
Koralogi



MASA PEMIJAHAN PADA KARANG (SPAWNING)





Oleh :NIRWAN
L111 09 277



JURUSAN ILMU KELAUTAN
FAKULTAS ILMU KELAUTAN DAN PERIKANAN
UNIVERSITAS HASANUDDIN
MAKASSAR
2011





1. Mengapa pemijahanpada karang lebih sering terjadi di musim semi atau musim panas di subtropik ?
Jawab: Pemijahan terjadi di musim semi atau musim panas di subtropik karena pada saat itu aliran arus laut dari daerah tropik memasuki daerah subtropik dan membawa arus hangat dari khatulistiwa serta membawa banyak nutrient makanan yang memungkinkan karang dapat melepaskan telur-telurnya dan mendapatkan makanan yang berlimpah. Perkembangan gonad karang di beberapa wilayah subtropis berlangsung pada kondisi perairan yang hangat, dari musim semi hingga musim panas (Richmond dan Hunter, 1990), sehingga diperkirakan spawning karang di wilayah tropis berlangsung sepanjang tahun. Spawning karang di Great Barrier Reef-Australia terjadi pada musim semi, sedangkankomunitas karang di Pasifik Tengah, Okinawa dan Laut Merah melakukan spawning pada waktumusim panas (Richmond dan Hunter, 1990). Perbedaan waktu spawning dapat terjadi antar jenis dan lokasi.
2. Mengapa pemijahan di daerah tropik berlangsung sepanjang tahun ?
Jawab: Pemijahan di daerah tropik berlangsung sepanjang tahun disebabkan karena pada
daerah tropik dengan peraian yang hangat sepanjang tahun memungkinkan karang
mendapatkan rasa nyaman untuk melepaskan telurnya dengan suhu tersebut serta jumlah
makanan yang banyak sehingga merangsang kematangan gonad lebih cepat dari pada
daerah subtropik, Strategi bereproduksi suatu jenis karang merupakan suatuu saha untuk
mempertahankan kelangsungan hidup yang berhubungan dengan kondisi lingkungan
tempat karang itu hidup. Indonesia sebagai negara tropik memiliki suhu perairan yang relatif
tinggi dengan variasi suhu yang kecil sehinggakarang-karang kemungkinan memiliki waktu
reproduksi sepanjang tahun (McGuire 1998).
Waktu spawning karang menjadi penting karena berkaitan erat dengan kelangsungan kehidupan suatu jenis karang. Kesesuaian waktu spawning dengan kondisi arus samudra saat itu akan menentukan penyebaran larva karang dandistribusi karang. Penentuan waktu spawning suatu jenis karang sangat dipengaruhi oleh proses perkembangan gonad karang pada setiap jenis karang.Pemijahan di daerah tropis dapat berlangsung sepanjang tahun diambil dari hasil pengamatan di beberapa wilayah menunjukkan bahwa spawning time bervariasi antar wilayah yang berbeda letak lintangnya. Bahkan saat pemijahan karang berbentuk koloni memiliki perbedaan waktu baik antar-populasi, antar-koloni maupun antar bagian/cabang dalam satu koloni.
3. Mengapapemijahan terjadi pada bulan terang atau gelap ?
Jawab: Pemijahan terjadi padabulan terang atau gelap karena saat tersebut merupakan momen dimana pesediaan makanan akan melimpah dan menyediakan untuk pelepasan telur karang. Dan saat itu dimana ikan nokurnal tidak akan mencari makanan.
Pada kebanyakan spesies hewan laut, siklus bulan mungkin memicu waktu pematangan sperma dan telur (Norton 1981,Philips et al. 1990), demikian pula pada karang (Wallace 1985,Glynn et al. 1991, McGuire 1998). Hasil penelitian secara eksperimental membuktikan bahwa fase bulan juga mempengaruhi tingkah laku pemijahan (Babcock et al. 1986,Hunter 1988) dan mengatur waktu pelepasan larva dari Pocillopora damicornis di Hawaii (Richmond & Jokiel 1984,Jokiel et al. 1985) dan Porites astreoides di Teluk Florida bagian utara (McGuire 1998).
Pemijahan yang terjadi pada malam hari setelah bulan purnama contohnya di The Great Barrier Reef. Setelah matahari terbenam dan sebelum bulan purnama muncul, karang memijah di dalam kegelapan. Pemijahan terjadi selama seminggu setelah bulan purnama Oktober atau Nopember. (Willis et al. 1985) Masing-masing spesies biasanya mempunyai jadwal tertentu untuk memijah setiap tahunnya.Goniastrea aspera, misalnya, memijah pada hari ke 2 hingga ke 4 setelah bulan purnama (Babcock et al. 1986). Pemijahan massal di the Great Barrier Reef ini berlangsung secara konsisten sejak diteliti di tahun 1981 sehingga kapan karang akan memijah telah dapat diramalkan jauh sebelumnya.
Sebagaimana hasil studi Edinger et al. (1996) yang melaporkan kejadian spawning karang massal di Kepulauan Karimunjawa, Jawa Tengah pada Oktober-Nopember 1995 yang terjadi setelah bulan purnama.
4. Mengapa pemijahan terjadi saat surut atau pasang tertinggi ?
Jawab: Pemijahan terjadi saat surut atau pasang tertinggi karena pada saat terjadi pasut aka nada gaya tarik menarikan tara gravitasi bulan dan bumi seingga memungkinkan karang melepaskan telurnya dengan mudah akibat gaya gravitasi yang besar itu dan persediaan makanan yang melimpah. Pasang surut berpengaruh pada spawning karang namun bisa dibatasi oleh pola pasang surut yang sering berubah.Hal ini dapat dilihat pada beberapa karang yang mati karena tidak dapat melakukan spawning pada daerah yang lebih dalam.Namun pola pasang surut juga berpengaruh terhadap tersedianya nutrien dan zat-zat hara anorganik bagi pertumbuhan karang (McGuire,1998)